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ABSTRACT 

The Ashland-Wedowee-Emuckfaw belt of the eastern Blue Ridge of Alabama and 

Georgia consists of metamorphosed Neoproterozoic-Ordovician continental margin and 

Ordovician back-arc sedimentary/volcanic sequences intruded by Ordovician-Mississippian 

granitic plutons. Two of these plutons, the Elkahatchee Quartz Diorite and Coley Creek 

orthogneiss exhibit zones of high strain, evidenced by mylonitic fabrics, ductile deformation of 

feldspar grains, grain size reduction, and changes in mica content at their margins. Geologic 

mapping in the vicinity of the Coley Creek pluton shows no evidence for a ductile shear zone 

beyond its margins and thus, is unlikely to be associated with a major fault. More likely, this 

high strain zone is the result of differential shearing due to mechanical differences between 

schist of the adjacent Emuckfaw Group and quartzofeldspathic rocks of the Coley Creek 

orthogneiss, in conjunction with pervasive chemical alteration during metamorphic dewatering 

of adjacent pelites. Similar high strain zones observed along the margin of the Elkahatchee 

batholith have been attributed to a major ductile shear zone associated with the Alexander City 

fault. This ductile shear zone, along the southeastern margin of the batholith where it borders 

Wedowee Group graphitic schist, is projected by some workers to the AL-GA state line, in which 

case it would have significant implications for the local and regional geology. Other workers 

argue, however, that the regional geology does not support this interpretation, and that the 

ductile shear zone cannot be mapped beyond the Elkahatchee batholith. Importantly, shear 

zones observed along the southeastern margin of the Elkahatchee batholith are similar in 

nature to the shear zone observed along the margins of the Coley Creek pluton, where a major 

fault is not present. I utilize Rf-0 analysis, along with mineralogical and grain size analysis, on 10 
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samples from regular intervals across the intrusive contacts of both plutons with their 

metasedimentary country rock towards the interiors of each pluton, to compare and contrast 

the mylonitic fabric observed along each margin. The work suggests the sheared margins of 

both are similar in nature and provides an alternative explanation for the ductile shear zone 

mapped as the Alexander City fault along the margin of the Elkahatchee batholith. 
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INTRODUCTION 

Ashland-Wedowee-Emuckfaw Belt 

The field area lies within the Ashland-Wedowee-Emuckfaw belt (AWEB), which consists 

of three groups of metasedimentary units interspersed with metavolcanic units and intruded by 

silicic plutons of varying size and age, metamorphosed to mid-upper amphibolite facies. The 

belt is bounded to the northwest by the Hollins Line fault, which separates it from the 

structurally lower Talladega belt, and to the southeast by the Abanda fault, which separates it 

from the structurally higher Jacksons Gap Group of the Brevard Fault Zone. 

Ashland Supergroup 

The Ashland Supergroup forms the structural and stratigraphic base of the AWEB. The 

Higgins Ferry Group and Poe Bridge Mountain Group are correlative across the Millerville 

antiform, from the southwest to the northeast respectively and form the structural and 

stratigraphic base of the Ashland Supergroup. They are predominantly made up of biotite-rich 

schists of varying garnet, quartz, feldspar, and graphite content, with subordinate fine-grained 

paragneiss and graphitic quartzite. The presence of staurolite, sillimanite, and kyanite in the 

metapelitic rocks, in addition to pegmatitic units of muscovite, biotite, K-feldspar, plagioclase, 

and quartz, and migmatitic units indicate mid-upper amphibolite facies metamorphism (Allison 

and Morisani, 2002) These units grade upwards into the Hatchet Creek and Mad Indian Groups, 

respectively. The Hatchet Creek and Mad Indian Groups are dominated by muscovite biotite 

schists of varying garnet, feldspar, and quartz content, with subordinate fine-grained garnet 
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biotite paragneiss, micaceous quartzite, calc-silicate, and graphitic schist. Again, migmatitic and 

pegmatitic units are present, as well as local kyanite and sillimanite. 

Protoliths for Ashland Supergroup rocks are pelitic units interlayered with subordinate 

greywackes and mafic flows and/or sills. The interlaying of pelitic rocks with greywackes, 

suggestive of turbidite sequences, in conjunction with calc-silicate and orthoamphibolite 

showing intraplate basalt geochemical characteristics, indicates the lower Ashland Supergroup 

formed in a slope-rise setting off the Laurentian shelf (Barineau et al. 2015). 

Wedowee Group 

Structurally and stratigraphically above the Ashland Supergroup lies the Wedowee 

Group. Much of its boundary with the Ashland Supergroup is defined by the Goodwater- 

Enitachopco fault, but the boundary exists as a polydeformed stratigraphic contact southwest 

of Goodwater, where the Goodwater-Enitachopco fault tips out. Here the contact is gradational 

(Allison, 1992). 

The rocks of the Wedowee Group are dominated by locally carbonaceous metapelitic 

units of varying garnet and graphite content, interlayered with subordinate quartzites and 

highly feldspathic schists to fine-grained biotite orthogneisses, interpreted to be 

metagreywackes. The presence of tourmaline, staurolite, kyanite, and sillimanite as accessory 

minerals again indicates middle-upper amphibolite facies metamorphism. Additionally, rocks of 

the Wedowee Group are interpreted to be early-mid Ordovician due to along-strike correlations 

with metavolcanic sequences in the Dahlonega gold belt, maximum deposition ages from 

detrital zircon, and intrusive pluton ages, and a U-Pb zircon age from a metavolcanic 
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(metavolcaniclastic?) unit near its upper contact with the overlying Emuckfaw Group (Barineau 

etal., 2015; Sagul, 2016). 

Emuckfaw Group 

The structurally and stratigraphically highest unit of the AWEB is the Emuckfaw Group. It 

consists of interlayered variably graphitic, garnetiferous two mica schist, and subordinate fine- 

grained, variably garnetiferous biotite paragneiss, micaceous quartzite, and orthoamphibolite. 

The Ordovician-aged Kowaliga Gneiss (Sagul, 2016), provides an upper age constraint on the 

deposition of the Emuckfaw and Wedowee Groups. Across the eastern Blue Ridge of Alabama, 

the contact between the overlying Emuckfaw and the underlying Wedowee Groups is a 

gradational one marked by an increase in graphite across the boundary, from the graphitic 

Wedowee to the graphite poor to non-graphitic Emuckfaw. Detrital zircons from both the 

Wedowee and Emuckfaw Groups loosely constrain deposition to Early-Middle Ordovician or 

younger, while intruding plutons (e.g. ca. 472Ma Zana Granite and ca. 462 Kowaliga Gneiss; 

Sagul, 2016) restrict the minimum depositional age to ca. 472 Ma. Detrital and intrusive age 

constraints, as well as inferred along-strike correlations with the metavolcanic units of the 

Dahlonega gold belt, indicate formation of Wedowee and Emuckfaw Group metasedimenary 

rocks and interlayered metavolcanics during the Early-Middle Ordovician. 

Alexander City Fault 

Interpretation 1: Through Going Thrust Fault Projected to GA Line 

The Alexander City fault (summarized in Tull and Campbell, 2012) was first defined by 

Bentley and Neathery (1970), who described it as running along the southeastern margin of the 
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Elkahatchee Quartz Diorite south of Alexander City and characterized "by intense shearing of 

schist units adjacent to the fault zone...Within the fault zones 'button' schist or mylonite schist 

are the most characteristic lithologies...." Bentley and Neathery (1970) interpreted the 

Alexander City fault as a thrust between the Elkahatchee batholith to the northwest and the 

Wedowee Group to the southeast, tracing the fault through the Wedowee Group to the 

Wedowee/Emuckfaw contact. Because of infolding along this same boundary, however, 

Muangnoicharoen (1975) interpreted the Wedowee/Emuckfaw contact to be a 

metamorphosed stratigraphic contact and not the location of the Alexander City fault. Bieler 

and Deininger (1987) observed minimal structural discordance across the Emuckfaw/Wedowee 

contact, but no measurable displacement, also interpreting the boundary between the two 

units as a metamorphosed stratigraphic contact. Drummond (1986) and Drummond et al. 

(1994;1997), similar to earlier interpretations by Bentley and Neathery (1970), placed the 

Alexander City fault along the southeastern margin of the Elkahatchee Quartz Diorite, but 

argued it was a high angle (70-90° dip), late stage, brittle fault displaying predominantly normal 

displacement. Guthrie (1995) interpreted the Alexander City fault as an early thrust emplacing 

the Emuckfaw Group structurally above the Wedowee Group, which was later overprinted by 

oblique dextral slip displacement (Fig. 1). 
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Orville Antif'o 
Fauft, Thrust 

Thrust fault location certain teeth 
on right from origin (angle of 
thrusting added to ARC-PARA1 
where designated in source) 

Alexander City 

Interpretation 2: Fault Tips Out South of Alexander City 

Recent interpretations by Tull and Campbell (2012), taking into account the notable 

linear trace and similarity to the Abanda fault (e.g. steep dip and similar trace, normal 

displacement), suggest the Alexander City fault tips out along the margin of the Elkahatchee 

batholith south of Alexander City. There it transitions into a relay ramp (Fig. 3 and 4), marked by 

silicified breccia, that crosses the Wedowee and Emuckfaw Groups and links to the Abanda 

Figure 1. State geologic map of Alabama showing interpretation of the Alexander City fault as an extensive thrust fault at the 

structural top of the Elkahatchee Quartz Diorite along its contact with the overlying Wedowee Group, before cutting up section 

to become the boundary between the Wedowee Group and overlying Emuckfaw Group northeast of the Elkahatchee batholith. 

Adapted from Szabo et al. 1988. 

fault (Fig. 2). 
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Figure 2. Geologic map from Tull and Campbell (2012) depicting the Alexander City fault as a late stage, brittle, predominantly 

normal displacement structure with a fault tip south of Alexander City on the margins of the Elkahatchee batholith. In this 

interpretation, the Alexander City fault connects to the Abanda fault at the northwestern margin of the Brevard Fault Zone 

across a broad relay ramp. 
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Figure 3. Hypothesized transfer zone via relay ramps from the tip points of the Alexander City and Abanda faults across the 

Emuckfaw Group. Highly brecciated cataclastic "dikes" with minimal offset mark the location of this relay ramp. From Tull and 

Campbell, 2012. 

Figure 4. Diagrammatic model for a relay ramp between two fault zones with normal displacement, similar to interpretations of 

the Alexander City and the Abanda faults (Tull and Campbell, 2012). Brecciated zones between the fault tips in the diagram are 

marked by cataclastic dikes between the Alexander City and Abanda faults in the Ashland-Wedowee-Emuckfaw belt. Adapted 

from Bucci et at., 2006. 
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Interpretation 3: Wide, Through Going Ductile Shear Zone 

Steltenpohl et al. (2013) argues the Alexander City fault is a "dextral strike-slip fault 

rather than a west-vergent thrust fault, as was previously thought." Here, he proposes the 

Alexander City fault, in conjunction with the Goodwater-Enitachopco fault, is part of an 

Alleghenian dextral right slip system across the entire eastern Blue Ridge of Alabama and 

western Georgia (Fig. 5). Differing spatial and kinematic interpretations for the Alexander City 

fault affect interpretations of the geologic history of the region, particularly the relationship 

between stratigraphic units and subsequent interpretations of geologic setting for these rocks. 

For example, a fault of potentially significant offset between the Wedowee and Emuckfaw 

Groups, which are interpreted as stratigraphically contiguous and part of the same Laurentian 

margin back-arc basin (Tull et al., 2014; Barineau et al., 2015), would suggest that no correlation 

exists, and these units are potentially not genetically related to one another. Therefore, 

resolving the location, timing and kinematics of the Alexander City fault is important for 

understanding the larger geologic history of the eastern Blue Ridge of the southern 

Appalachians. 
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Late to post-Appalachian strain partitioning and extension in the Blue Ridge 

i 
& 
e> 

Aj 1?1 lil A' 
V&RNjsfr-^—^ EBR ’ VX IP 

Exposure of brittle fault, 
cataclasite, or siliceous pod 

Isotopic Sample Localities 
MD 1 Mitchell Dam Amphibolite 
GW-1 Mytonitized grarwtOKi 
GE-1 & 10ENITA1 Trondhjemrte dike 

_ Elk-21 Trondhjemrte dike 
© AL-49 Ropes Creek Amphibolite 

undifferentiated 

Jacksons Gap Group 

IX XI Ordo-Dev granitoids (EOD= 
P . -1 ElkahatchM Quartz Diororte) 

Devgrjjw^to Carboniferous 

Zana and Kowaiiga (K) 
granitic gneiss 

Grenville basement 

mylomtized EBR rocks 

Figure 5. Geologic map from Steltenpohl et al. (2013) depicting the Alexander City fault as a broad pre to syn-metamorphic 

ductile shear zone separating the structurally lower Elkahatchee Quartz Diorite and overlying Wedowee Group from the 

structurally higher Emuckfaw Group across the entire eastern Blue Ridge of Alabama. 

Prior Work on Field Area 

The field site I used to examine the possibility of a pre to synmetamorphic ductile shear 

zone phase of the Alexander City fault is located several kilometers south of Alexander City (Fig. 

1), on the margin of the Elkahatchee Quartz Diorite, where it contacts the Wedowee Group. 

Harstad (2015) found the contact between the two units consisted of a 150m transitional zone 

of interlayered, mylonitized granodiorites and metapelites. Both outcrop scale and thin section 

scale analysis failed to show definitive signs of cataclasis, indicating the brittle phase of the 
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Alexander City fault tipped out south west of the location. Rocks across the transition show 

signs of ductile shear, including an "S-C "button" fabric in metapelitic units and sigmoidal 

feldspar porphyroclasts in metaigneous rocks, as well as isoclinal folding of quartz ribbons in 

both units" (Harstad 2015), while shear sense indicators show dextral shearing under pressure- 

temperature conditions capable of producing feldspar plasticity. 

METHODOLOGY 

Comparing the Coley Creek and Elkahatchee Margins 

Field Area: Alexander City Quad 
Elkahatchee 

Wedowee 

Emuckfaw 

Proposed Alexander 
City Fault 

Figure 6. Field area, including the location of the proposed Alexander City Fault, the Coley Creek orthogneiss, and relevant 

geologic units. See figure 1. For location within regional context. Credit, Google Earth imagery, geologic map adapted from 

(Carpenter, 2015). 

Evidence for ductile shearing was noted along the margins of the Elkahatchee Quartz 

Diorite and Coley Creek orthogneiss (Fig. 6) in the Ashland-Wedowee-Emuckfaw belt during 
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field mapping. These ductile shear zones shared common features, most notably the presence 

of mylonitic fabrics in orthogneiss lithologies and phyllonitic textures in metapelitic (schist) 

lithologies, across the contacts between these units. Although deformation in this region has 

resulted in macroscopic and megascopic isoclinal folding of stratigraphy, it is clear from regional 

map relationships that the Coley Creek orthogneiss intrudes stratigraphy of the Ordovician- 

aged Emuckfaw Group. Preliminary isotopic ages on the Coley Creek suggest a Middle 

Ordovician crystallization age, similar to magmatic ages of the Zana Granite and Kowaliga 

Gneiss (Sagul et al., 2015). Importantly, the highly strained zones on the margins of the Coley 

Creek orthogneiss are not mappable beyond the margins of this contact and are not associated 

with a fault zone of significant magnitude. 

We hypothesize that these areas of high strain along the margins of the Coley Creek 

where it borders the Emuckfaw Group, approximately 1.4 kilometers southeast of the proposed 

ductile shear zone along the Elkahatchee Quartz Diorite margin, are due to contrasting 

mechanical competency between the pluton and the adjacent schist during peak kinematic 

conditions. Additionally, it is likely that dehydration of pelitic units during metamorphism 

concentrated fluid flow along the margins of the Coley Creek orthogneiss, which, coupled with 

the rheological contrasts, provides the conditions necessary to create concentrated zones of 

high strain during Carboniferous (ca. 330 Ma) amphibolite facies metamorphism. In this study, I 

compare and contrast the ductile shearing observed by Steltenpohl et al. (2013) and others 

along the "ductile" Alexander City fault with ductile shearing along the margins of the Coley 

Creek pluton in an attempt to assess both zones as potentially resulting from mechanical 

differences and fluid flow between the pluton and surrounding schist bodies during 
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metamorphism, rather than as a through-going ductile shear zone with significant offset. This 

research compares strain gradients across the margins of the Elkahatchee Quartz Diorite at 

Elkahatchee Creek, where right-slip ductile shearing is observed and attributed to the 

Alexander City fault, to the highly strained margins of the Coley Creek orthogneiss, where 

ductile shearing is attributed to localized shearing along an intrusive contact. 

Figure 7. Rock samples were cut parallel to the mean stretching lineation and perpendicular to foliation, then 

photographed. Identifiable feldspar grains on each photograph were outlined by free-hand tracing their boundaries in 

PowerPoint. 
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Figure 8. The background photo was then deleted, leaving the grain outlines, which were imported into SAPE for analysis 

(Mulchrome et al. 2005). SAPE calculated best fit ellipses for all grain outlines. The smallest high aspect ratio grains were 

occasionally misread by the program, which produced observably incorrect best fit ellipses for them. These grains were 

excluded from the exported data. 

Z2 SAPE- (listOf fitted date} Image Pile (W002 Pottet Run bmp; 

File Protest Viest Help 

<* » a f 
0002 169.00 785.00 27.59 5.31 85.40 3.10 
0003 167.00 1015.00 1.#J 0.00 1.00 0.00 NOT TO BE PROCESSED 
0004 190.00 869.00 17.92 2.94 271.88 15.17 NOT TO BE PROCESSED 
0005 207.00 486.00 21.43 -2.99 148.30 6.92 
0006 201.00 966.00 13.65 -2.36 36.45 2.67 
0007 212.00 206.00 8.35 -2.17 74.47 8.92 
0008 208.00 843.00 15.97 11.46 28.59 1.79 
0009 210.00 972.00 26.30 -1.24 53.52 2.04 
0010 216.00 1065.00 4.38 19.18 8.84 2.02 
0011 214.00 1031.00 1.#J 0.00 1.00 0.00 
0012 218.00 403.00 9.26 2.26 32.41 3.50 
0013 230.00 769.00 7.63 6.92 35.91 4.71 
0014 231.00 412.00 6.66 2.70 34.85 5.23 
0015 246.00 1021.00 7.99 5.92 80.60 10.09 
0016 249.00 354.00 7.07 -0.69 60.28 8.53 
0017 255.00 505.00 10.09 2.23 105.70 10.47 
0018 262.00 743.00 10.03 0.11 48.44 4.83 
0019 259.00 201.00 12.97 2.24 13.00 1.00 
0020 263.00 321.00 24.45 -3.25 18.02 0.74 
0021 278.00 177.00 8.67 4.84 21.02 2.43 
0022 281.00 857.00 4.40 26.68 6.29 1.43 
0023 292.00 902.00 7.93 11.97 44.56 5.62 
0024 297.00 304.00 19.20 2.78 66.52 3.47 
0025 29300 587.00 16.80 0.30 19.58 1.17 
0026 294.00 611.00 1.#J 0.00 1.63 0.00 NOT TO BE PROCESSED 
0027 308.00 524.00 8.63 14.16 26.70 3.09 
0028 321.00 298.00 17.87 4.79 34.32 1.92 
nn?9 329 0(1 151 00 13 R7 0 9R 9R 91 7 1fi 

Figure 9. Raw data, including long and short axes of the best fit ellipses and O values, as shown above, were then exported to a 

.txt file. Rows labeled "NOT TO BE PROCESSED" were automatically omitted when the data is exported. From there the data 

was copied into a CFIEW Excel Spreadsheet capable of performing Rf-0 analysis and calculating bulk strain (Chew 2003). Using 

the methods outlined in Chew (2003), the data was plotted and bulk strain (Rs) values were calculated for each sample. 
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Figure 10. Ln Rf VS. Phi for sample KJ010 plotted using CHEW Excel Spreadsheet. Plot shows aspect ratio vs orientation of 

feldspar grains. Bulk strain values for this sample (Elkahatchee) are approximately 1, the minimum for all samples in this study. 

Ln R, vs. Phi 
KJ002/Sum/8.95 

0 0.S 1 1.5 2 2.6 3 3.5 
Ln R< 

Figure 11. Ln Rf VS. Phi for sample KJ002 plotted using CHEW Excel Spreadsheet. Plot shows aspect ratio vs orientation of 

feldspar grains. Bulk strain values for this sample (Coley Creek) are approximately 9, the maximum for all samples in this study. 
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Coley Creek Margin 
Bulk Strain (Rs) VS Distance (m) 

Figure 12. The strain gradient across the Coley Creek margin is significantly more intense than that of the Elkahatchee. Rs values 

for each sample range from just under 4.4 to nearly 8.95, decreasing from the contact into the Coley Creek, with the exception 

of the sample at the contact (see interpretation). Higher bulk strain values calculated for the Coley Creek, proximal to its 

* contact with schist of the Emuckfaw Group, are consistent with observations of mylonitic fabrics present in hand samples. 

Elkahatchee Margin 
Bulk Strain (Rs) Vs Distance (M) 

10 

9 

8 

7 

6 

S 

4 

3 

2 

1 

0 

-R* s? 0:6T63* 

100 150 

Distance from contact in meters 

Figure 13. After calculating the Rs values for each sample, we plotted bulk strain data against distance from the contact 

(calculated true thickness). The strain gradient across the margin of the Elkahatchee at Elkahatchee Creek is significantly lower 

than that observed along the margins of the Coley Creek pluton. Additionally, Rs values for Elkahatchee samples are lower than 

those of the Coley Creek. 
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RESULTS 

From my analysis, we see that the margin of the Coley Creek pluton, which is not 

associated with a major fault, records significantly higher Rs values and a higher strain gradient 

(Fig. 12), than the margin of the Elkahatchee batholith (Fig. 13), where a ductile shear zone has 

been proposed (Steltenpohl et al., 2013). Qualitative mineralogical and grain size analysis of the 

samples (Figs. 14-17) shows mylonitization of feldspar megacrysts along the margins of the 

Coley Creek orthogneiss, but no major changes in mineralogy (Figs. 14-15). Along the margins of 

the Elkahatchee batholith, no change in mineralogy and only minimal grain size reduction, as 

compared to less strained portions of the Elkahatchee where grains were presumably closer to 

their original size, was observed in our samples, despite the presence of mylonitic fabrics (Figs. 

16-17). 

Discussion 

There are, however, a number of pitfalls associated with this research. With progressive 

mylonitization, it is possible that grain size reduction accompanied by decreases in aspect ratio 

(Rf value) could cause a highly strained rock to have low calculated bulk strain values using this 

method. Therefore, it is possible that Rs values associated with mylonitic fabrics at the margins 

of the Elkahatchee batholith (Fig. 16) might not represent the true bulk strain of these rocks. 

Flowever, in the field, we were not able to observe the types of strain gradients seen along the 

margins of the Coley Creek pluton, which we would expect to occupy the transition zone 

between less sheared portions of the Elkahatchee and more highly strained, mylonitic rocks 

within the proposed Alexander City fault "ductile" shear zone (Fig. 13). Further and more 
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quantitative mineralogical and grain size analysis may reveal more about the similarities and 

differences between these margins, but my initial investigation suggests, aside from 

mylonitization of feldspar megacrysts on the margin of the Coley Creek pluton, major changes 

in grain size or mineralogy are not present along the margins of either body. 

Figure 14. KJ001, collected 0.5m from the Coley Creek/Emuckfaw contact, clearly shows high strain. 

Figure 15. KJ005, collected 136m structurally above the Coley Creek/Emuckfaw contact, shows little to no 

mineralogical change, although a lower aspect ratio of feldspars is evident, suggesting lower bulk strain values 

relative to the margins of the pluton. 
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Figure 16. KJ011, collected 2m from the Elkahatchee/Wedowee Contact, depicts development of a mylonitic fabric, 

however grain size in this sample is similar to that in less strained Elkahatchee. 

Figure 17. KJ007, collected 281m from the Elkahatchee/Wedowee contact. 
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CONCLUSIONS 

The data suggests it is possible to interpret the shearing on the margins of the 

Elkahatchee batholith in terms of mechanical difference and fluid flow during metamorphism, 

rather than a major tectonic boundary with significant displacement. More detailed strain 

mapping of the plutons in question, as well as more quantitative grain size and mineralogical 

analysis of samples could provide more definitive results. 

Due to the logistics of Rf-0 analysis, we were unable to map the strain gradient 4.5km 

into the Elkahatchee Quartz Diorite, as proposed by Steltenpohl et al. (2013). It is possible, 

therefore, that the low bulk strain values observed across the Elkahatchee-Wedowee contact 

could still be associated with significant dextral offset if it were argued that the shear zone 

("ductile Alexander City fault") was very wide (>3km). However, it should be noted that this 

interpretation still centers on the observed high strain zones along the margins of the 

Elkahatchee, which we have shown to be explainable by other means. Additionally, 

interpretations of a kilometers-wide shear zone is partially based on the presence of a sheared 

trondjhemite dike internal to the batholith, but ~4.5km away from the Elkahatchee-Wedowee 

contact. The nearly identical ages, however, between the dike and the Elkahatchee batholith 

(ca. 370 Ma) suggests this sheared dike was being deformed while the Elkahatchee host rock 

was still crystallizing (Tull and Campbell, 2012; Barineau et al., 2015). 
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Discussion 

This work suggests it is possible to interpret the strain observed along the margins of 

the Elkahatchee Quartz Diorite, in the Elkahatchee Creek area, several kilometers north of 

where the brittle Alexander City fault is proposed to tip out (Tull and Campbell, 2012; Harstad, 

2015), as simply the result of mechanical differences between the Elkahatchee Quartz Diorite 

and the adjacent Wedowee Group in addition to penetration of chemically active fluids from 

the Wedowee Group during peak metamorphism, which occurred after the intrusion of the 

Elkahatchee Quartz Diorite and Coley Creek Gneiss, rather than as a ductile shear zone with 

potentially significant offset between two bodies otherwise considered to be stratigraphically 

connected. 

There are, however, a number of caveats on interpretations presented herein. If the 

shear zone really is ~4km wide, as presented in Steltenpohl et al. (2013), this research covered 

only a small area of it, and a wider study would be needed to see if it yielded similar results. 

However, logistical issues associated with taking a statistically significant number of samples 

across the proposed 4km shear zone and analyzing them requires a large scale project far 

beyond the scope of this exploratory exercise. 

Additionally, because Rf-phi analysis cannot accurately quantify strain in rocks that have 

suffered significant grain size reductions coupled with decreases in aspect ratio, samples with 

very-fine grain sizes were specifically avoided during sampling. If these zones accommodated 

significant strain, it is probable that this analysis would have underestimated their bulk strain 

values. 
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